
Online Appendix 
Canadian Municipal Barometer Survey 

The	Canadian	Municipal	Barometer	COVID-19	survey	was	fielded	between	April	3	and	April	
17,	2020.	Invitations	were	sent	to	all	of	the	mayors	and	councillors	for	whom	the	CMB	
research	team	was	able	to	collect	email	addresses	-	more	than	95%	of	the	total	population	
of	mayors	and	councillors	in	municipalities	above	9,000	population	in	Canada.	Of	the	3,419	
email	invitations	received	by	municipal	leaders,	a	total	of	551	completed	the	survey,	for	an	
overall	response	rate	of	16	percent.	

For	additional	insight	on	some	of	the	findings	in	the	CMB	survey,	we	conducted	electronic	
correspondence	with	four	experts	after	the	survey	closed	-	one	current	municipal	mayor,	
one	current	municipal	councillor,	and	two	individuals	with	extensive	experience	as	
municipal	and/or	provincial	public	servants.	To	better	understand	the	“emergency	
management”	variable,	we	also	selected	a	random	sample	of	twenty	municipalities,	ten	in	
Ontario	and	ten	outside	Ontario,	and	read	public	press	releases	and	media	coverage	of	the	
“state	of	emergency”	declarations	in	each	of	the	twenty	municipalities.	The	twenty	
municipalities	we	selected	were:	Newmarket,	Leamington,	Centre	Wellington,	Burlington,	
Mississippi	Mills,	Toronto,	Richmond	Hill,	Strathroy-Caradoc,	Elliot	Lake,	Wellesley,	Red	
Deer,	Kamloops,	Lévis,	Montreal,	Delta,	Sherbrooke,	Camrose,	Pincourt,	Leduc,	and	North	
Saanich.	

Below,	we	provide	complete	question	texts	and	response	breakdowns	for	each	of	the	
questions	used	in	this	paper.	Note	that	complete	datasets	are	publicly	available	at	the	CMB	
dataverse:	(https://doi.org/10.5683/SP2/KIX0MD).	

emergency 

“Has	your	municipality	declared	a	state	of	emergency?”	

		 Freq	 %	
No	(0)	 265	 50.19	
Yes	(1)	 258	 48.86	

Don’t	know	(9)	 5	 0.95	
Total	 528	 100.00	

cases 

“To	the	best	of	your	knowledge,	how	many	reported	COVID-19	cases	have	occurred	so	far	
in	your	municipality?”	

		 Freq	 %	
0	(1)	 81	 15.34	

1-9	(2)	 172	 32.58	
10-24	(3)	 60	 11.36	



25-49	(4)	 46	 8.71	
50-99	(5)	 27	 5.11	

100-249	(6)	 41	 7.77	
250-499	(7)	 16	 3.03	

More	than	500	(8)	 17	 3.22	
Don’t	know	(9)	 68	 12.88	

Total	 528	 100.00	

aggressiveness 

"Some	municipalities	have	chosen	to	respond	to	COVID-19	with	very	aggressive	social	
distancing	policies,	facility	and	event	closures,	and	other	measures.	Others	currently	have	
less	aggressive	restrictions	in	place.	

How	would	you	describe	your	municipality’s	current	approach	to	the	COVID-19	
pandemic?"	

		 Freq	 %	
Not	at	all	aggressive	(1)	 15	 2.85	

Moderately	aggressive	(2)	 288	 54.75	
Extremely	aggressive	(3)	 222	 42.21	

Don’t	know	(9)	 1	 0.19	
Total	 526	 100.00	

status_cityhall 

"What	is	the	status	of	the	following	facilities	and	services	in	your	municipality?	

City	Hall	(or	equivalent	facility)"	

		 Freq	 %	
Fully	closed	(1)	 270	 51.43	

Partially	closed	or	reduced	service	(2)	 252	 48.00	
Open	/	service	as	usual	(3)	 3	 0.57	

Not	applicable	to	my	municipality	(4)	 0	 0.00	
Don’t	know	(9)	 0	 0.00	

Total	 525	 100.00	

status_recreation 

"What	is	the	status	of	the	following	facilities	and	services	in	your	municipality?	

Recreation	facilities"	

		 Freq	 %	



Fully	closed	(1)	 515	 98.10	
Partially	closed	or	reduced	service	(2)	 8	 1.52	

Open	/	service	as	usual	(3)	 0	 0.00	
Not	applicable	to	my	municipality	(4)	 2	 0.38	

Don’t	know	(9)	 0	 0.00	
Total	 525	 100.00	

status_parks 

"What	is	the	status	of	the	following	facilities	and	services	in	your	municipality?	

Parks	and	playgrounds"	

		 Freq	 %	
Fully	closed	(1)	 365	 69.52	

Partially	closed	or	reduced	service	(2)	 154	 29.33	
Open	/	service	as	usual	(3)	 5	 0.95	

Not	applicable	to	my	municipality	(4)	 1	 0.19	
Don’t	know	(9)	 0	 0.00	

Total	 525	 100.00	

status_libraries 

"What	is	the	status	of	the	following	facilities	and	services	in	your	municipality?	

Public	libraries"	

		 Freq	 %	
Fully	closed	(1)	 490	 93.33	

Partially	closed	or	reduced	service	(2)	 21	 4.00	
Open	/	service	as	usual	(3)	 0	 0.00	

Not	applicable	to	my	municipality	(4)	 10	 1.90	
Don’t	know	(9)	 4	 0.76	

Total	 525	 100.00	

status_transit 

"What	is	the	status	of	the	following	facilities	and	services	in	your	municipality?	

Public	transit"	

		 Freq	 %	
Fully	closed	(1)	 43	 8.19	

Partially	closed	or	reduced	service	(2)	 279	 53.14	



Open	/	service	as	usual	(3)	 75	 14.29	
Not	applicable	to	my	municipality	(4)	 119	 22.67	

Don’t	know	(9)	 9	 1.71	
Total	 525	 100.00	

gov_council 

"What	is	the	status	of	the	following	governance	processes	in	your	municipality?	

Council	meetings"	

		 Freq	 %	
Cancelled	(1)	 16	 3.05	
In	camera	(2)	 30	 5.71	

Switched	to	virtual	/	teleconference	(3)	 465	 88.57	
Proceeding	as	usual	(4)	 12	 2.29	

Not	applicable	to	my	municipality	(8)	 0	 0.00	
Don’t	know	(9)	 2	 0.38	

Total	 525	 100.00	

gov_committee 

"What	is	the	status	of	the	following	governance	processes	in	your	municipality?	

Committee	meetings"	

		 Freq	 %	
Cancelled	(1)	 205	 39.05	
In	camera	(2)	 17	 3.24	

Switched	to	virtual	/	teleconference	(3)	 298	 56.76	
Proceeding	as	usual	(4)	 2	 0.38	

Not	applicable	to	my	municipality	(8)	 1	 0.19	
Don’t	know	(9)	 2	 0.38	

Total	 525	 100.00	

gender 

A	total	of	34	percent	of	the	men	and	women	who	completed	the	CMB	COVID-19	survey	
were	women,	compared	with	33%	in	the	population.	

		 Freq	 %	
Man	 314	 60.27	

Woman	 157	 30.13	



Other	response	 38	 7.29	
Refused	 12	 2.30	
Total	 521	 100.00	

province 

The	distribution	of	respondents	in	the	CMB	survey	matches	the	overall	distribution	of	
municipal	mayors	and	councillors	in	the	population	very	well,	with	no	more	than	2%	
differences	between	population	and	respondents	in	all	categories	except	Quebec,	where	
respondents’	proportion	in	the	survey	is	3.5%	lower	than	their	proportion	of	the	larger	
population.	

		 Freq	 %	
AB	 67	 11.59	
BC	 64	 11.07	
MB	 22	 3.81	
NB	 17	 2.94	

NFLD	 12	 2.08	
NS	 26	 4.50	
ON	 215	 37.20	
PEI	 2	 0.35	
QC	 142	 24.57	
SK	 10	 1.73	
YT	 1	 0.17	

Total	 578	 100.00	

population size 

Respondent	distributions	in	our	sample	across	population	size	are	very	close	to	respondent	
distributions	in	the	population	of	municipal	mayors	and	councillors.	

		 Freq	 %	
9,000-14999	 185	 32.01	
15000-24999	 124	 21.45	
25000-49999	 93	 16.09	
50000-99999	 56	 9.69	

100000-499999	 79	 13.67	
500000+	 41	 7.09	

Total	 578	 100.00	



Additional Plots: Variation in Policy Choices 

Here	we	consider	variation	across	municipal	population	size,	province,	health	unit	and	
number	of	cases.	Figure	8	shows	the	proportion	of	fully	closed	facilities	(or	emergency	
status	declared)	by	province.	The	provinces	are	ordered	by	their	average	across	all	of	the	
indicators;	on	average,	Ontario	appears	to	have	the	most	aggressive	response.	We	will	
return	to	this	later	with	a	more	sophisticated	modeling	strategy.	There	does	appear	to	be	
some	structure	in	the	data	here	-	provinces	closer	to	the	top	have	municipalities	which	
have,	on	average,	closed	more	services	than	those	toward	the	bottom.	

Figure	9	shows	policy	implementation	by	city	population	category.	The	patterns	here	are	
interesting	and	provide	context	to	the	different	ways	in	which	policy	adoption	adapts	to	the	
particular	municipal	context.	Here,	parks	and	city	hall	closures	and	emergency	status	are	
slightly	more	likely	to	be	invoked	in	municipalities	with	greater	populations,	but	transit	is	
more	likely	to	be	closed	in	municipalities	with	smaller	populations	-	likely	due	to	the	
necessity	of	having	some	public	transit	available	to	enable	frontline	workers	to	travel	to	
their	jobs	in	large	metropolitan	areas.	



	



Figure	8:	COVID-19	Response	by	Province	

	

Figure	9:	COVID-19	Response	by	Population	



	

Figure	10:	COVID-19	Response	by	Perceived	Aggressiveness	of	Response	

Technical Discussion of Model 
Identification 

There	are	three	common	ways	of	identifying	the	statistical	model.	Identification	is	the	
process	whereby	we	constrain	the	model	just	enough	to	ensure	that	there	are	not	multiple	
equally	good	solutions.	In	our	OLS	models,	the	identifying	restrictions	that	we	put	in	place	
are	that	there	are	at	least	as	many	observations	as	there	are	variables	in	the	model	and	that	
there	is	no	perfect	collinearity.	In	IRT	models,	more	needs	to	be	done	to	ensure	that	other	
solutions	do	not	arise.	

First,	for	any	solution	we	come	up	with,	there	would	be	an	equally	good	mirror-image	
solution.	For	example,	if	we	estimated	the	discrimination	parameter	to	be	2	and	an	ideal	
point	to	be	1	with	a	difficulty	parameter	of	0,	then	we	could	get	exactly	the	same	value	by	
multiplying	both	the	coefficients	and	ideal	points	by	-1.	

Second,	there	is	no	information	in	the	data	about	the	scale	(i.e.,	variance)	of	the	latent	
variable.	Just	like	above,	since	the	coefficients	and	the	latent	variable	are	both	unobserved,	
changes	in	the	scale	of	one	estimate	can	be	compensated	for	by	changes	in	the	scale	of	the	
other.	Both	of	these	are	issues	that	we	have	to	solve	to	make	sure	that	the	markov	chain	is	
exploring	a	single	posterior	distribution.	



There	are	three	common	ways	to	identify	measurement	models	of	this	kind.	The	way	we	
choose	to	do	it	is	by	setting	a	single	coefficient	to	a	fixed	value.	Any	fixed	value	would	work,	
but	1	is	a	sort	of	reasonable	default.	This	actually	solves	both	problems	-	fixing	the	scale	of	
the	coefficients	and	thus	the	latent	variable.	It	also	forces	a	direction	on	the	coefficients	and	
thus	the	latent	variable,	too	-	it	prevents	the	markov	chain	from	exploring	a	mirror	image	
posterior	distribution.	Another	common	means	for	identification	is	to	fix	the	scale	of	the	
latent	variable	in	the	model.	For	each	iteration	of	the	markov	chain,	the	latent	variable	
would	be	standardized	to	have	mean	zero	and	unit	variance.	We	also	have	to	set	an	
additional	sign	constraint	on	at	least	one	of	the	coefficients	to	prevent	exploration	of	a	
mirror	image	solution.	Another	option	is	to	only	use	sign	constraints	and	then	to	post-
process	the	chains	after	the	fact	to	standardize	the	latent	variable	and	adjust	the	model	
parameters	accordingly.	We	choose	the	first	way	for	simplicity	and	computational	
efficiency.	

Priors 

The	priors	in	the	model	may	seem	somewhat	informative,	but	they	are	relatively	
conventional	priors	for	these	kinds	of	models.	The	latent	variable	has	a	prior	of	H(0,1).	
Since	one	of	the	reliable	items	has	a	coefficient	set	to	1	for	identification	purposes,	we	
would	expect	the	ideal	points	to	vary	probably	between	5)$(.05) =	-2.94	and	5)$(.95) =	
2.94where	5(⋅)	is	the	CDF	of	the	logistic	distribution.	These	values	are	not	particularly	
unusual	values	for	a	H(0,1)	distribution.	The	coefficient	priors	are	H&(K, L)	with	K = {0,0}	
and	L = M10 0

0 10
N.	Given	the	scale	of	the	other	coefficient	and	the	presumed	scale	of	the	

latent	variable,	then	we	would	expect	the	coefficients	to	be	well	within	the	range	of	a	
distribution	with	these	characteristics.	

Estimation 

The	model	we	discussed	in	the	article	was	estimated	with	JAGS	v4.3.0	(Plummer	2017)	
through	R	and	the	rjags	package	(Plummer	2018).	The	code	for	the	full	and	null	models	is	
below:	

status.mod <- "model{	
  for(i in 1:n){	
    chstat[i] ~ dbern(p[munid[i], 1])	
    parkstat[i] ~ dbern(p[munid[i], 2])	
    emergency[i] ~ dbern(p[munid[i], 3])	
    transtat[i] ~ dcat(p3[munid[i], 1:3])	
  }	
  for(i in 1:nm){	
    logit(p[i,1]) <- b[1,1] + b[1,2]*latent[i] 	
    logit(p[i,2]) <- b[2,1] + b[2,2]*latent[i] 	
    logit(p[i,3]) <- b[4,1] + b[4,2]*latent[i] 	
    for(j in 1:2){	
        logit(q.trans[i,j]) <- kappa3[j] - b[5,2]*latent[i]	
    }	
    p3[i,1] <- q.trans[i,1]	



    p3[i,2] <- q.trans[i,2] - q.trans[i,1]	
    p3[i,3] <- 1-q.trans[i,2]	
    latent[i] ~ dnorm(0,1)	
  }	
  for(j in 2:5){	
    b[j, 1:2] ~ dmnorm(b0[1:2], B0[1:2,1:2])	
  }	
  k[1:2] ~ dmnorm(b0[1:2], B0[1:2,1:2])	
  kappa3[1:2] <- sort(k[1:2])	
}	
"	
	
null.mod <- "model{	
  for(i in 1:n){	
    chstat[i] ~ dbern(p[munid[i], 1])	
    parkstat[i] ~ dbern(p[munid[i], 2])	
    emergency[i] ~ dbern(p[munid[i], 3])	
    transtat[i] ~ dcat(p3[munid[i], 1:3])	
  }	
  for(i in 1:nm){	
    logit(p[i,1]) <- b[1,1] 	
    logit(p[i,2]) <- b[2,1] 	
    logit(p[i,3]) <- b[4,1] 	
    for(j in 1:2){	
        logit(q.trans[i,j]) <- kappa3[j] 	
    }	
    p3[i,1] <- q.trans[i,1]	
    p3[i,2] <- q.trans[i,2] - q.trans[i,1]	
    p3[i,3] <- 1-q.trans[i,2]	
    latent[i] ~ dnorm(0,1)	
  }	
  for(j in 2:5){	
    b[j, 1:2] ~ dmnorm(b0[1:2], B0[1:2,1:2])	
  }	
  k[1:2] ~ dmnorm(b0[1:2], B0[1:2,1:2])	
  kappa3[1:2] <- sort(k[1:2])	
}	
"	

In	these	models,	munid	is	a	municipal	id	counter	that	goes	from	1-306,	identifying	each	
municipality.	Even	though	there	are	multiple	respondents	in	each	municiaplity,	we	are	
estimating	a	single	ideal	point	for	each	municipality.	

Convergence and Model Comparison 

We	tune	the	adaptive	rejection	sampler	for	2500	iterations,	then	burn-in	the	model	for	
10,000	iterations	and	sample	2,500	iterations	from	each	of	two	chains	that	we	summarise	
below.	The	model	appears	to	have	converged.	The	multivariate	PSRF	for	the	full	model	is	
1.14	and	the	upper	bound	of	the	biggest	individual	PSRF	was	only	approximately	1.1	with	



318	model	parameters.	The	Geweke	diagnostic	also	shows	generally	good	results	with	the	
O-statistics	generally	falling	within	the	confidence	bounds	of	the	standard	normal	
distribution.	

The	model	also	seems	to	provide	some	predictive	power.	In	addition	to	the	model	
described	above,	we	also	estimated	a	null	model	-	one	with	only	intercept(s)	for	the	
indicators.	Comparing	the	deviance	information	criterion	(DIC)	values	for	the	null	and	full	
model	gives	us	a	sense	of	the	value	added	that	the	latent	variable	provides.	The	DIC	for	the	
null	model	is	2741.235	and	for	the	full	model	it	is	2555.081.	As	with	other	information	
criterion	comparisons,	smaller	values	are	better.	The	difference	in	the	DIC	values	of	
186.154	favors	the	full	model	indicating	that	a	unidimensional	structure	model	fits	better	
than	one	that	assumes	no	underlying	structure.	

Predictive Models with Monte Carlo Integration. 
In	the	results	above,	we	employ	two	different	kinds	of	models	-	an	Item	Response	Theory	
model	to	identify	the	dependent	variable	and	a	set	of	bivariate	predictive	models	to	help	
understand	the	correlates	of	policy	responsiveness.	One	way	of	handling	this	would	be	to	
simply	build	a	full	Bayesian	structural	equation	model.	This	would	allow	us	to	incorporate	
both	kinds	of	models	into	one.	However,	in	this	case,	we	would	need	several	different	SEMs	
to	deal	with	the	different	predictors	mentioned	in	the	article.	In	each	of	these,	the	
incorporation	of	predictors	of	the	latent	trait	would	change	the	latent	traits	values,	even	if	
only	slightly.	Instead	of	doing	this,	we	opt	for	the	Monte	Carlo	integration	approach.	

The	Monte	Carlo	integration	approach	takes	the	following	steps.	

1. Take	the	first	iteration	of	the	Markov	Chain	for	the	latent	variable	and	call	these	
latent($).	
	

2. Estimate	the	following	model:	latent($) = G* + G$P + Q.	
3. Take	a	single	draw	from	the	distribution	H&(R, ST(R)),	where	R = {G*, G$}	and	ST(R)	is	

the	variance-covariance	matrix	of	the	estimators.	We	store	this	single	draw	from	the	
bivariate	normal	distribution	as	the	first	row	of	+.	4.	Repeat	by	replacing	with	latent($)	
with	latent(.)	for	U = 1,… , #Iterations.	

At	the	end	of	this	process,	we	withh	have	a	#XUQ#YU.@Z[ × 2	posterior	distribution	of	
coefficients	from	the	model	above.	We	can	summarise	that	distribution,	particularly	
looking	for	the	posterior	probability	of	being	above	or	below	zero.	This	posterior	
probability	amounts	to	something	like	a	Bayesian	]-value.	If	a	large	proportion	of	the	
posterior	distribution	is	above	(or	below)	zero,	say	95%,	then	we	could	say	that	the	result	
is	statistically	reliable.	Note	that	we	don’t	say	significant	here	becaus	significance	carries	
with	it	frequentist	baggage	-	it	particularly	identifies	a	result	relative	to	a	null	hypothesis	in	
the	frequentist	inferential	paradigm.	

All	of	the	models	we	estimate	are	simple	OLS	models,	except	for	the	one	with	conservative	
vote	choice.	Here,	we	estimate	a	second-degree	local	polynomial	regression	model	with	



span	=	.75;	we	use	the	loess()	function	in	R	to	accomplish	this.	The	inferences	we	make	
are	based	on	predictions	from	this	model.	We	follow	the	same	Monte	Carlo	integration	
method	described	above,	but	instead	of	coefficients,	we	do	it	with	predictions.	Here,	we	
draw	each	prediction	from	its	own	univariate	normal	distribution.	To	evaluate	differences	
in	the	linear	and	non-linear	models,	we	look	at	the	F&.	We	calculate	F&	for	each	iteration	of	
the	Monte	Carlo	simulation	and	then	compare	the	posterior	distribution	of	F&	values	across	
the	two	models.	

While	this	model	is	generally	a	bivariate	model,	we	can	control	for	another	variable	by	
residualization.	In	particular,	we	first	estimate	these	two	models:	

Latent = ^Province	Dummies+ Q(latent)
Conservative	Vote = ^∗Province	Dummies+ Q(cons	vote)

	

where	^	and	^∗	are	both	vectors	of	coefficients	attached	to	the	provincial	dummy	variables.	
Then,	we	estimate	a	loess	regression	of	Q(latent)	on	Q(cons	vote).	

Perceived and Measured Aggressiveness 
We	asked	CMB	respondents	to	describe	the	aggressiveness	of	their	municipality’s	response	
to	COVID-19.	Interestingly,	as	the	boxplot	in	figure	11	shows,	these	perceptions	are	almost	
completely	unrelated	to	our	measure	of	municipal	aggressiveness.	



	

Figure	11:	Municipal	Policy	Aggressiveness	by	COVID-19	Cases	

Why	do	we	see	this	absence	of	any	relationship	between	measured	and	perceived	
aggressiveness?	We	cannot	fully	explore	the	answer	here,	but	the	answer	does	not	appear	
to	be	that	we	are	missing	some	essential	indicator	from	our	measure,	since	all	existing	
evidence	suggests	that	other	indicators,	such	as	social	distancing	enforcement	measures,	
are	strongly	correlated	with	the	indicators	we	use	here.17	Nor	do	we	see	clear	patterns	of	
perceived	aggressiveness	across	provinces,	case	totals,	or	municipal	population	size.	
Perceived	aggressiveness	might	therefore	be	more	closely	related	to	a	respondent’s	local	
environment	and	comparisons	with	neighbouring	municipalities	or	regions.	

	

17	https://citywatchcanada.ca/	


